LangChain is an open-source framework that simplifies the development of applications using large language models (LLMs). It provides a unified interface for interacting with various LLMs, making building chatbots, question-answering systems, and other AI-powered applications easier.

In this tutorial, I'll teach you LangChain in 7 easy steps. You will learn the core features of the framework and we will cover:

  • Why you want to learn LangChain
  • Composing chains with prompt templates and loaders
  • The runnable protocol and LangChain expression language
  • Creating vectorstore-backed retrievers
  • Building RAG chains
  • Using tools with chains
  • Building agents with access to tools
By the end of the tutorial, you will have a solid foundation for diving deeper into the LangChain ecosystem and start testing, deploying, and building advanced Multi Agent systems with LangGraph.

Colab Notebook & Interactive Map

This post is for subscribers only

Sign up now to read the post and get access to the full library of posts for subscribers only.

Sign up now Already have an account? Sign in